Chloroform, Chlorobenzene, Dichlorobenzene and Trichlorobenzene
Classification / Family
Organic semiconducting materials, Low band-gap polymers, Organic Photovoltaics, Polymer solar cells, Perovskite solar cells, Hole-transport layer materials
英國Ossila材料PCE-12 OPV材料PBDB-T CAS:145929-80-4
Applications
PBDB-T (PCE12) is one of the highest-performing donor polymers for OPVs, having reported efficiencies exceeding 12% [1, 2], and a certified efficiency approaching 11% [3]. These efficiencies were achieved when PBDB-T was used in conjunction with recently-reported non-fullerene acceptors (including ITIC) in inverted architecture devices. These devices also exhibited excellent thermal stability, making the combination a promising candidate for the proposed 10/10 target of 10% efficiency and 10-year lifetimes.
PBTB-T (PCE12) is easy to process, simplifying device fabrication while simultaneously providing high performance.
Due to good HOMO alignment with the valence band of commonly-used perovskites, this polymer could also be used as a hole-transporting material in perovskite solar cells .
Usage Details
The device structure of the certified devices was:
ITO / ZnO (30 nm) / PBDB-T:ITIC (100 nm) / MoO3 (10 nm) / Al (100 nm)
PBDB-T:ITIC solution details:
Blend ratio: 1:1,
Concentration: 20 mg/ml,
Solvent: Chlorobenzene
Additive: 0.5% Diiodooctane.
Literature and Reviews
Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells, S. Li et al, Adv. Mater., 28, 9423–9429 (2016); DOI: 10.1002/adma.201602776.
Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency, W. Zhao et al., Adv. Mater., 29, 1604059 (2017); DOI: 10.1002/adma.201604059.
Fullerene-Free Polymer Solar Cells with over 11% Ef?ciency and Excellent Thermal Stability, W. Zhao et al., Adv. Mater., 28, 4734–4739 (2016); DOI: 10.1002/adma.201600281.